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Abstract Malicious executables are programs designed to
infiltrate or damage a computer system without the owner’s
consent, which have become a serious threat to the security of
computer systems. There is an urgent need for effective tech-
niques to detect polymorphic, metamorphic and previously
unseen malicious executables of which detection fails in most
of the commercial anti-virus software. In this paper, we deve-
lop interpretable string based malware detection system
(SBMDS), which is based on interpretable string analysis and
uses support vector machine (SVM) ensemble with Bagging
to classify the file samples and predict the exact types of
the malware. Interpretable strings contain both application
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programming interface (API) execution calls and important
semantic strings reflecting an attacker’s intent and goal. Our
SBMDS is carried out with four major steps: (1) first
constructing the interpretable strings by developing a feature
parser; (2) performing feature selection to select informative
strings related to different types of malware; (3) followed by
using SVM ensemble with bagging to construct the classifier;
(4) and finally conducting the malware detector, which not
only can detect whether a program is malicious or not, but
also can predict the exact type of the malware. Our case study
on the large collection of file samples collected by Kingsoft
Anti-virus lab illustrate that: (1) The accuracy and efficiency
of our SBMDS outperform several popular anti-virus soft-
ware; (2) Based on the signatures of interpretable strings, our
SBMDS outperforms data mining based detection systems
which employ single SVM, Naive Bayes with bagging, Deci-
sion Trees with bagging; (3) Compared with the IMDS which
utilizes the objective-oriented association (OOA) based clas-
sification on API calls, our SBMDS achieves better perfor-
mance. Our SBMDS system has already been incorporated
into the scanning tool of a commercial anti-virus software.

1 Introduction

Malicious executables are programs designed to infiltrate
or damage a computer system without the owner’s consent,
which have become a serious threat to the security of compu-
ter systems. New, previously unseen malicious executables,
polymorphic and metamorphic malicious executables which
are generated by obfuscation techniques are more complex
and difficult to detect. According to its propagation methods,
a malicious code is usually classified into the following cate-
gories [1,10,20]: viruses, backdoors, spyware, trojan horses
and worms. Malicious executables do not always exactly fit
into these categories and the malicious code combining two
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or more categories can lead to powerful attacks. For ins-
tance, a worm containing a payload can install a back door to
allow remote access. Due to the significant loss and damages
induced by malicious executables, the malware detection
becomes one of the most critical issues in the field of com-
puter security.

Currently, the most important lines of defense against mal-
ware are anti-virus programs. These widely-used malware
detection software tools use signature-based methods to reco-
gnize threats [11,12]. A signature is a short string of bytes
which is unique for each known malware. However, this clas-
sic signature-based method always fails to detect variants of
known malware or previously unknown malware. The pro-
blem lies in the signature extraction and generation process,
and in fact these signatures can be easily bypassed. In order to
remain effective, it is of paramount importance for the anti-
virus companies to be able to quickly analyze variants of
known malware and previously unknown malware samples.
Unfortunately, the number of samples that need to be analy-
zed on a daily basis is constantly increasing [2]. The virus
analysts at Kingsoft Anti-Virus lab conclude that there are
around 70,000 samples, which they called “gray list”, needed
to be analyzed per day. This clearly reveals the need for an
automatic, efficient, and robust tool to classify the “gray list”.

1.1 Interpretable string based malware detection

Recently there are a few attempts on applying data mining
and machine learning techniques to detect new malicious
executables [8,17,24,27,31]. The performance of these
techniques critically depends on the set of features used to
describe the executables and the classifier [23]. The “interpre-
table strings” are no longer simple printable strings [17,24],
but API calls [27] from Import Table which can reflect the
behavior of program code pieces and strings carrying seman-
tic interpretations which can reflect an attacker’s intent and
goal. The virus analysts at Kingsoft anti-virus lab suggest
that the interpretable strings are good static features since
they can not only parse the possible behaviors of a malicious
executable, but also capture the malware author’s intent and
goal.

For example, the string of “〈html〉 〈script language =
‘javascript’〉 window.open(‘readme.eml’)” always exists in
the worms of “Nimda” and implicates that they try to infect
the scripts. Another example could be the string “‘&gameid=
%s&pass=%s; myparentthreadid=%d; myguid=%s” which
indicate that the attacker intend to steal the password of the
online game and send it back to the server. The strings, like
“!0&0h0m0o0t0y0” and “*3d%3dtgyhjij”, though they are
printable, will not be extracted as the features of the file
samples, since they can’t be semantically interpreted. So far,
we have gathered 39,838 executables, of which 8,320 are
referred to as benign executables and 31,518 are malicious

ones of four different types (i.e., backdoors, spyware, tro-
jans and worms). All of these samples are obtained from
Kingsoft anti-virus lab. From these executables we extract
963,556 interpretable strings in total.

In order to develop an automatic and efficient system for
malware detection based on interpretable strings, we have to
address the following four challenges:

• Scalability: The system must be scalable since we have
thousands of file samples with hundreds of thousands of
strings.

• Generalization: Using interpretable strings, each file
sample is represented as a (usually sparse) vector in a
very high dimensional feature space. Hence the system
should be able to deal with the curse of dimensionality
and generalize well.

• Efficiency: Since a virus scanner is usually a speed sensi-
tive application, so the performance of the system should
be guaranteed.

• Effectiveness: The system should have a high detection
rate with low false positive rate.

To address these above challenges, in this paper, we deve-
lop interpretable string based malware detection system
(SBMDS) using support vector machine (SVM) ensemble [9]
with Bagging [7], to classify the file samples and predict the
exact types of the malware. SBMDS consists of three major
modules: Feature parser, SVM ensemble, and malware detec-
tor. The feature parser is used to extract the interpretable
strings from file samples. SVMs have shown to be effective
in classification. They are also able to handle large feature
spaces and generalize well. However, SVM is computatio-
nally infeasible on our large scale of data, because its training
complexity is highly dependent on the size of the data set [35].
Ensemble classifier techniques are attractive in this respect,
so we use the SVM ensemble with bagging to address the
challenge of scalability. To improve the efficiency, we per-
form feature selection before applying classifiers to select
informative strings related to different types of malware.

1.2 Our contribution and the organization of the paper

Our malware detection is carried out with four major steps:
(1) first constructing the interpretable strings by developing
a feature parser; (2) performing feature selection to select
informative strings related to different types of malware; (3)
followed by using SVM ensemble with bagging to construct
the classifier; (4) and finally conducting the malware detector,
which not only can detect whether a program is malicious or
not, but also can predict the exact type of the malware. Our
case study on the large collection of file samples collected
by Kingsoft Anti-virus lab illustrate that: (1) The accuracy
and efficiency of our SBMDS outperform several popular
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anti-virus software; (2) Based on the signatures of interpre-
table strings, our SBMDS outperforms data mining based
detection systems which employ single SVM, Naive Bayes
with bagging, Decision Trees with bagging; (3) Compared
with the IMDS which utilizes the objective-oriented associa-
tion (OOA) based classification on API calls, our SBMDS
achieves better performance. Our SBMDS system has already
been incorporated into the scanning tool of a commercial
anti-virus software.

In summary, our main contributions are: (1) We develop
an integrated SBMDS system based on the analysis of inter-
pretable strings, which may be the first attempt using them
as signatures for malware detection; (2) Based on such large
scale data set of high dimensionality and sparsity, we adapt
SVM ensemble with bagging technique to improve the sys-
tem effectiveness and efficiency; (3) Our SBMDS not only
can provide the binary prediction, e.g., whether a program is
malicious or not, but also can predict the exact type of the
malware; (4) We evaluate our system on a large collection
of executables including 8,320 benign samples and 31,518
malicious ones; (5) We provide a comprehensive experimen-
tal study on various anti-virus software as well as various
data mining techniques for malware detection using our data
collection; (6) Our system has been already incorporated into
the scanning tool of a commercial anti-virus software.

The rest of the paper is organized as follows. Section 2
discusses the related work. The SBMDS system architec-
ture is described in Sect. 3. We present our data collection
and SVM ensemble with bagging for multi-classification
methodology in Sects. 4 and 5, respectively. In Sect. 6, we
present and discuss the experimental results. Finally, Sect. 7
concludes.

2 Related work

In order to overcome the disadvantages of the widely-used
signature-based malware detection method, data mining and
machine learning approaches are proposed for malware
detection [8,17,24,27,31]. The performance of such methods
used for malware detection critically depend on the set of fea-
tures and the classifier [23].

For feature extraction, there are three prevalent methods:
binary profiling, string sequences, and so-called hex dumps
[17]. In our previous work [34], we extracted the windows
application programming interface (API) execution calls,
which can reflect the behavior of program code pieces, as
the signatures of the file samples. In this paper, based on our
experiences of malware analysis at Kingsoft anti-virus lab,
we present that the interpretable strings can be better static
features for malware detection, as they include not only API
calls from Import Table, but also more important semantic
information which can reflect an attacker’s intent and goal.

Besides the pair of the interpretable strings as mentioned in
the previous section, here we give another example. The inter-
pretable string “if exist ‘%s’ goto delete /tmp.bat” always
implicates that the malware may generate the “.bat” file to
suicide. Compared with other feature extraction approaches,
such as sequence of instructions or hex dumps [8], the inter-
pretable strings, including API calls from Import Table and
strings carrying semantic interpretation, are the high-level
specifications of malicious behaviors and contain the impor-
tant semantic information which can reflect the attacker’s
intent and goal. In addition, compared with the feature extrac-
tion approach by running the program in a sand-box and
focusing on its interaction with the operating system [8],
our proposed static feature extraction method is easier and
less expensive, but includes more implicit information. More
importantly, if we use interpretable strings as the file features,
it is not easy for the malware authors to evade our detection.
This is because even if they generate the variants of the mal-
ware by re-compiling or adopting obfuscation [3] techniques
such as polymorphism and metamorphism, it is impractical
for them to modify all of the interpretable strings in their
programs.

For classification, we developed an intelligent malware
detection system (IMDS) in our previous work [34], which
adopts OOA mining based classification method based on the
analysis of API calls. In [34], we compared our IMDS with
other classifiers developed in the previous studies [17,24,31],
e.g., the Naive Bayes classifier, J4.8 version of Decision Tree
implemented in WEKA [33], and also the SVM implemented
in LIBSVM package [14]. The results show that our IMDS
applying OOA mining based classification method outper-
forms other classification approaches in both detection rate
and accuracy. However, in this paper, OOA mining based
classification method is not suitable for the dataset of high
dimensionality and sparseness.

With the advantage of handling large feature space without
overfitting, SVM [36] and relevance vector machine (RVM)
pioneered by Tipping [29] have shown state-of-art results in
classification problems [6,29,36]. RVM is a Bayesian treat-
ment of the sparse learning problem. Though it surpasses
SVM when probabilistic outputs or kernel selection come to
discussion [18,19], SVM still presents complexity and accu-
racy preponderance [26]. Since malware detection is usually
a speed and false positive sensitive application, we apply
SVM as our base classifier.

However, despite the success of SVM in classification,
the training complexity of SVM is highly dependent on the
size of the data set [22]. Ensemble classifiers are quite popu-
lar in many data mining applications due to their potential
for efficient parallel implementations and high accuracy. An
ensemble of classifiers is a set of classifiers whose indivi-
dual decisions are combined to classify new examples [9].
Ensemble classifier techniques are attractive in solving the
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problem of scalability, since robust and accurate classifier
aggregations can be learned even if each individual classifier
operates on the incomplete training data, i.e., certain training
instances are eliminated at random [16]. Many methods for
constructing ensembles have been developed [9], while
Bagging [7] and Boosting [13] are most popular ensemble
learning algorithms [21]. Adaboost [13], as the most popular
upgraded algorithm of boosting, employs a weak learner to
find a good hypothesis. Unfortunately, the findings in [32]
show that Adaboost with SVM does not work well. In this
paper, we use the SVM ensemble with bagging technique to
solve the problem of scalability.

Different from earlier studies, our work is based on a large
collection of malware collected at Kingsoft Anti-Virus Lab.
To the best of our knowledge, no attempt has been made
on interpretable-string feature extraction and using SVM
ensemble with bagging for malware detection. It will be inter-
esting to know the performance compared with other feature
extraction methods and classifiers.

3 The system architecture

Our SBMDS system is performed directly on Windows por-
table executable (PE) code. PE is designed as a common file
format for all flavor of Windows operating system, and PE
malware are in the majority of the malware rising in recent
years. The system consists of three major components: fea-
ture parser, SVM ensemble with bagging, and malware detec-
tor, as illustrated in Fig. 1.

The functionality of the feature parser is to generate the
interpretable strings for each PE file. If a PE file is previously
compressed by a third party binary compress tool, it needs
to be decompressed before being passed to the feature par-
ser. Then we use the extracted interpretable strings as the
signatures of the PE files. After that, a SVM ensemble with
bagging is applied to construct the classifiers. To determine
whether a PE file is malicious or not and predict the exact type
of the malware, we pass the extracted interpretable strings to
each classifier in the SVM ensemble and then combine the
prediction results by using majority voting. Thus the final
report is exported via the malware detector. The detail pro-
cedures of data collection, interpretable string generation,
and SVM ensemble with bagging for multi-classification
methodology are respectively described in the following two
sections.

4 Data collection and transformation

As stated previously, we obtain 39,838 executables, of which
8,320 are referred to as benign executables and 31,518 are
malicious ones of four different types (e.g., backdoors, spy-
ware, trojans and worms). All of these file samples are provi-
ded by Kingsoft Anti-virus lab. Then we develop the feature
parser to extract the static features from each PE file, which
includes API calls from the Import Table and strings carrying
semantic interpretation. The implementation of our feature
parser mainly involves the following procedures:

Fig. 1 SBMDS system
architecture
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1. Verify if the file is a valid PE file.
2. Locate the PE header by examining the DOS header;
3. Obtain the address of the data directory in Image_

Optional_Header;
4. Extract the value of VirtualAddress in the data directory;
5. Find Image_Import_Descriptor structures using the

value of VirtualAddress;
6. Check the RVA value in each Image_Import_Descriptor

structure found in step 5 to locate the arrays which contain
the API function names;

7. Extract API function calls from the Import Table.
8. Read the PE file and if there’s a sequence of consecu-

tive bytes belonging to the same Character Set, such as
ASCII, GB2312, Big5 and Unicode, then exact them as
our candidate interpretable strings.

9. Use the corpus of natural language to filter the candi-
date interpretable strings. If the string consists most of
the unusual characters which are not in the corpus, like
“!0&0h0m0o0t0y0”, it will be pruned by our feature
parser.

Figure 2 shows a sample interpretable strings extracted
by our feature parser. These strings are extracted from a mal-
ware named Backdoor − Redgirl.exe. From Fig. 2, we can
see the behaviors of the malware and the attacker’s intent
explicitly.

Through the feature parser, we extract 963,556 interpre-
table strings including API calls from Import Table and
strings carrying semantic interpretation from 39,838 file
samples in the database. Now the data is well processed and
ready for the further steps to finally achieve the goal of mal-
ware detection.

Fig. 2 Interpretable strings sample extracted by feature parser

5 SVM ensemble with bagging for multi-classification

The large scale of data with high dimensionality and spar-
seness requires proper data mining methods to be applied
for malware detection. With the advantage of handling large
feature space without overfitting, SVM has shown state-of-
art results in classification problems [16,30,35]. However,
the training complexity of SVM is highly dependent on the
size of the data set, so we propose to use SVM ensemble
with bagging technique to solve the problem of scalability.
Finally, “one-against-one” approach [14] is used for multi-
classification.

5.1 SVM overview

In supervised learning, a learning problem is given training
examples of the form {(x1, y1), . . . , (xn, yn)} for some unk-
nown function y = f(x). The xi values are typically vectors
of the form < xi1, xi2, . . . , xim > whose components are dis-
crete or continuous valued. These values are also called the
features of xi . The y values are typically drawn from a discrete
set of classes {1, . . . , K} in the case of classification or from
the real line in the case of regression [9]. Given a training set
S, a learning algorithm outputs a classifier. The classifier is a
hypothesis about the true function f [9]. Given new x values,
the classifier predicts the corresponding y values.

Support vector machine is a promising method for data
classification and regression [16,30,35]. The key to the suc-
cess of SVM is the kernel function which maps the data from
the original space into a high dimensional feature space. By
constructing a linear boundary in the feature space, the SVM
produces nonlinear boundaries in the original space. The out-
put of a linear SVM is u = w× x −b, where w is the normal
weight vector to the hyperplane and x is the input vector.
Maximizing the margin can be seen as an optimization pro-
blem:

minimize
1

2
‖w‖2, subject to yi (w · x + b) ≥ 1,∀i,

where x is the training example (the features of the training
malware or benign file in our case study) and yi is the correct
output for the ith training example (the type of the file sample,
e.g., trojan, worm, backdoor, spyware or benign). Intuitively
the classifier with the largest margin will give low expected
risk, and hence better generalization.

Though SVM can effectively handle the traditional pro-
blem of “Curse of dimensionality” [7], it is not desired for
large-scale data mining because the training complexity of
SVM is highly dependent on the size of data set. This has
become an obstacle to the use of SVM in problem with our
large malware data set. In order to deal with such problem, we
apply ensemble classifier techniques for malware detection.
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5.2 SVM ensemble with bagging

An ensemble of classifiers is a set of classifiers whose indi-
vidual decisions are combined in some way (typically by
weighted or unweighted voting) to classify new samples [9].
Ensembles are often much more accurate than the individual
classifiers that make them up [9].

Though lots of ensembles of classifiers have been propo-
sed [9,15,22,26,32] most of them can be decomposed into
two cascaded components. The first component is to create
base classifiers with necessary accuracy and diversity, and the
second one is to aggregate all of the outputs of base classi-
fiers into a numeric value as the final output of the ensemble
classifier. In this paper, we use bagging as the method for
generating base classifiers and adopt the majority voting [15]
approach to aggregate the independently trained SVMs.

Bagging is the procedure that generates K bootstrap
samples from training data, and each one is taken as a sub-
set [7]. A bootstrap sample is generated by uniformly
sampling N examples from the training dataset with replace-
ment, where N is the size of training dataset. The algorithm
of constructing the SVM ensemble with bagging is shown in
Algorithm 1.

1. Input: A training set S = (x1, y1), . . . , (xn, yn), where
xi ∈ X and yi ∈ Y = (1, 2, . . . , L); K : the number of
base classifiers;

2. For k = 1, 2, . . . , K do
(1) Generate a new training set S

′ = bootstrap sample
with replacement from S;
(2) Apply the base SVM classifier on S

′
, Ck : X −→ Y ;

3. Output the aggregated classifier based on Majority Voting
approach.

Algorithm 1: SVM ensemble with bagging

5.3 SVM ensemble for multi-classification

In the previous sections, we discussed the binary classifica-
tion. For multi-classification, we use the “one-against-one”
approach [14] in which K (K −1)/2 classifiers are construc-
ted and each one trains data from two different classes. For
training data from the i th and the j th classes, we solve the
following two-class classification problem [14]:

minwi j ,bi j ,εi j
1

2
(wi j )T wi j + C

(∑
i

(ε
i j
t )

)

subject to

(wi j )T φ(xt ) + bi j � 1 − ε
i j
t , if xt in the ith class;

(wi j )T φ(xt )+bi j �−1+ε
i j
t , if xt in the jth class; ε

i j
t �0.

Then we use a voting strategy: each binary classification
is considered to be a voting where votes can be casted for all
data points x . In the end, a point is designated to be in a class
with maximum number of votes. In case that two classes have
identical votes, we simply select the one with the smallest
index. For our malware dataset, we divide them into to four
sets and number 1 to 4 indicates backdoors, spyware, trojans
and worms respectively. Benign files are represented as 0.

6 Experimental results and analysis

We randomly select 9,838 executables from our data col-
lection, of which 2,320 are referred to as benign executables
and 1,936 backdoors, 1,769 spyware, 1,911 trojans and 1,902
worms in the training dataset. The rest of the collected exe-
cutables are used for testing purpose. After filtering the can-
didate strings, we finally extract 13,448 interpretable strings
in total. As not all of the interpretable strings are contribu-
ting to malware detection, we rank each interpretable string
using Max-Relevance algorithm [34] and choose top 3,000
interpretable strings as the features for later classification.
Figure 3 shows that the training accuracy of the base classifier
changes slightly when the number of features reaches 3,000.
In our SBMDS, 100 SVM base classifiers are constructed.
For bootstrapping, we randomly sample 1,230 executables
from the training dataset. We train each SVM independently
over the replicated training dataset and aggregate the trained
SVMs via Majority Voting.

We conduct three sets of validation studies using our col-
lected data obtained from Kingsoft Anti-virus Lab. The first
set of study is to compare the abilities to detect the variants
of known malware and unknown malware of our SBMDS

Fig. 3 SVM base classifier detection accuracy changed by features
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system with current widely used anti-virus software. The
efficiency and false positives by using different scanners have
also been examined. In the second set of study, resting on the
analysis of interpretable strings, we compare our SBMDS
system with other classification based methods. Finally, we
compare the SBMDS with our previous IMDS which adopts
the OOA mining based classification method based on the
analysis of API calls. All the validation studies are conduc-
ted under the environment of Windows XP operating system
plus Intel P4 1.83 GHz CPU and 1 GB of RAM.

6.1 Comparison of different anti-virus scanners

In this section, we examine the abilities of detecting the
variants of known malware and unknown malware of our sys-
tem in comparison with some of the popular software tools
such as Norton AntiVirus, Dr. Web, McAfee VirusScan and
Kaspersky Anti-Virus. We use all of their newest versions of
the base of signature on the same day (20 February, 2008)
for testing. The efficiency and the number of false positives
are also evaluated.

6.1.1 Variants of known malware detection

In this experiment, we use 1,000 malware as the test data
set, which are not trained by our SBMDS. Several recent
Win32 PE malware are included in the test dataset for ana-
lysis such as Redgirl, Bancos, MSNBot and Viking. For
each malware, we collect their variants generated by the
malware authors applying the encryption and obfuscation
techniques [4,5], like flow modification, data segment modi-
fication and insertion of dead code. These variants of the
malware are not included in our training set. Then we com-
pare our system with current most widely used anti-virus
software. The results shown in Table 1 demonstrate that our
SBMDS system achieves better accuracy than other software
in the variants of known malware detection.

6.1.2 Unknown malware detection

In order to examine the ability of identifying new and pre-
viously unknown malware of our SBMDS system, we use
500 malware for test. These malware are not simple modi-
fications of well known malware which may be rewritten
by the malware authors according to new requirements, like
bypassing the signatures of Anti-Virus scanners or modi-
fying part of the malware functions. They are analyzed by
the experts in KingSoft Anti-virus lab and their signatures
have not been recorded into our training signature database.
Comparing with other anti-virus software, our SBMDS sys-
tem performs the most accurate detection. The results are
listed in Table 2.

Table 1 Variants of known malware detection

Software N D M K SBMDS

Backdoor.Redgirl
√ √ √ √ √

Redgirl V1
√ × × √ √

Redgirl V2 × √ √ √ √
Redgirl V3 × √ × × √
Spyware.Bancos

√ √ √ √ √
Bancos V1 × × √ √ √
Bancos V2

√ √
? × √

Bancos V3
√ × × × √

Troj.MSNBot
√ √ √ √ √

MSNBot V1 × ? × √ √
MSNBot V2

√ × √ √ √
MSNBot V3 × √ × × √
Worm.Viking

√ √ √ √ √
Viking V1 × × × ?

√
Viking V2 × × √ × √

Remark N Norton AntiVirus, D Dr.Web, M MacAfee, K Kaspersky. In
the table, “

√
” indicates successful detection, “×” indicates failure to

detect, and “?” represents only an “alert”; all the scanners used are of
most current and updated version

6.1.3 System efficiency and false positives

In malware detection, a false positive occurs when the scan-
ner marks a benign file as a malicious one by error. In this
set of experiments, in order to examine the system efficiency
and the number of false positives of the SBMDS system, we

Table 2 Unknown malware detection

Software N D M K SBMDS

Malware1 × W W × W

Malware2 D × D T D

Malware3 × S D × S

Malware4 × × × × ×
Malware5 × T × D T

Malware6 × D S × D

Malware7 W × × × W

Malware8 × × × × T

Malware9 × × × D D

Malware10 × × × × S

Malware11 T × × × T

Malware12 × × × W W

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Malware500 S × T × T

Stat. 332 318 358 395 469

Ratio 66.4% 63.6% 71.6% 79% 93.8%

Remark D Backdoor, S Spyware, T Trojans, W Worms

123



290 Y. Ye et al.

sample 2,000 executables collected by Kingsoft Anti-Virus
lab in the test data set, which contains 1,000 malicious execu-
tables and 1,000 benign ones including some Windows sys-
tem files for Simplified Chinese platform and some common
software that are easily misclassified by Anti-Virus scanners.

First, we compare the efficiency of our system with four
widely used anti-virus software. The results in Fig. 4 illustrate
that our SBMDS system achieves much higher efficiency
than other scanners when being executed in the same envi-
ronment.

The number of false positives by using different scanners
are also examined. By scanning 1,000 benign executables
which are not trained by our SBMDS, we obtain the results
shown in Fig. 5. Figure 5 shows that the false positives by
using our SBMDS system are fewer than other scanners. The
system files “Netapi32.dll” and “Lsasrv.dll” for Simplified
Chinese platform are misclassified by Norton and some com-
mon software like “FY-Firewall” is recognized as backdoor
by MacAfee. In addition, some security tools and the plug-
in of instant message (IM) software like ‘QQ”, “MSN” and
“Yahoo Messager” are also easily recognized as malicious
by Anti-Virus scanners.

Fig. 4 Efficiency of different scanners

Fig. 5 False positives by using different scanners

6.2 Comparison of different classification methods

In this set of experiments, we use the same dataset as
described in Sect. 6 for training, and then select 1,230 file
samples from the rest of our data collection to evaluate the
performance of each classification method. We compare our
SBMDS system with single SVM, Naive Bayes ensemble
with bagging, J4.8 version of Decision Tree implemented in
WEKA [33] ensemble with bagging. For bootstrapping, we
randomly sample 1,230 executables from the training dataset.
For each ensemble, 100 base classifiers are constructed and
we train each base classifier independently over the replica-
ted training dataset and aggregate the trained base classifiers
via Majority Voting.

In this section, we measure the classification performance
of different algorithms using F1 measure, which is defined
as [25,28],

F1 = 2 × Recall × Precision

Recall + Precision

where recall is the ratio between the number of correct posi-
tive predictions and the total number of positive examples;
precision is the ratio between the number of correct positive
predictions and the number of positive predictions. Based
on the F1 score, we use the Micro-F1 and Macro-F1 for the
comparisons:

1. Micro-F1 = F1 over categories and file samples
2. Macro-F1 = average of with-in category F1 values

Micro-F1 and Macro-F1 emphasize the performance of
the system on common and rare categories, respectively
[25,28]. Results shown in Table 3 indicate our SBMDS sys-
tem achieve the most accurate malware detection.

Table 3 Results by using different classifiers resting on interpretable
strings

Algs. B (%) D (%) S (%) T (%) W (%)

SSVM 82.28 92.79 84.51 84.16 82.77

BNBayes 95.28 61.71 54.46 55.12 50.42

BJ4.8 97.64 48.20 43.66 53.47 44.96

SBMDS 93.70 93.69 88.26 92.74 92.63

Algs. Micro-F1 (%) Macro-F1 (%)

SSVM 84.72 84.60

BNBayes 62.25 63.78

BJ4.8 56.87 57.59

SBMDS 92.30 92.22

Remark In the table, SSVM single SVM, BNBayes Naive Bayes with
bagging, BJ4.8 decision trees (J4.8) with bagging. B Benign files, D
Backdoor, S Spyware, T Trojans, W Worms
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6.3 Comparison of SBMDS and IMDS

It may also be interesting to compare IMDS and SBMDS as
they use different feature extraction methods. IMDS adopts
the OOA mining based classification method resting on the
analysis of API calls, while SBMDS is based on interpretable
string analysis. Using the same data set described in Sect. 6,
we rank each Windows API call using Max-Relevance algo-
rithm, and then choose top 500 API calls as the features for the
IMDS. We use the same testing set as described in Sect. 6.2
to evaluate the accuracy of each classifier. Results shown in
Table 4 indicate our SBMDS achieve higher accuracy for
malware detection.

From Tables 3 and 4, we observe that:
1. Based on the feature extraction method of interpre-

table strings set, our SBMDS outperforms other classification
methods in both detection rate and accuracy.

2. The comparison of SBMDS and IMDS shows that
adding strings carrying semantic interpretation as the signa-
tures of the file samples are better than only Win API calls.
Figure 6 shows that some malware can be predicted by the
SBMDS, while IMDS fails to detect them. For example, one
of the popular backdoors named RedGirlV 2007.exe is well
specified by the strings marked by the red lines in Fig. 6. Parts
of the malware can not be recognized by API calls based clas-
sifiers, because they may load most of the API calls, thus it
is hard to specify the malicious behaviors of the executables.
But interpretable strings, as the signatures of the file samples,
can be a better representative of each malware, because they
include not only API calls, but also more important implicit
information which can well reflect the attacker’s intent and
goal. Table 5 illustrates part of the important relevant strings
of the Worms. In Table 5, from our virus analysis experiences,
the string of “mailfrom: imissyou@btamail.net.cn” always
exists in the worms and implicates that they try to send mails.

7 Conclusion

In this paper, we describe our research effort on malware
detection based on interpretable strings. We develop an inte-
grated SBMDS system consisting of a feature parser, SVM

Table 4 Results by using IMDS and SBMDS

Algs. B (%) D (%) S (%) T (%) W (%)

IMDS 91.34 90.54 86.85 91.09 89.50

SBMDS 93.70 93.69 88.26 92.74 92.63

Algs. Micro-F1 (%) Macro-F1 (%)

IMDS 90.01 89.91

SBMDS 92.30 92.22

Remark In the table, B Benign files, D Backdoor, S Spyware, T Trojans,
W Worms

Fig. 6 Malware sample detected by SBMDS but fail in IMDS

ensemble with bagging classifier and malware detector. First,
a feature parser is developed to extract the interpretable
strings for each Windows PE file. Then, SVM ensemble with
bagging is constructed. Finally through the malware detec-
tor, the exact type of the malware can be predicted. SBMDS
achieves high performance in scalability, generalization, effi-
ciency and effectiveness, and we summarize our main contri-
butions as follows:

• 1. We develop an integrated SBMDS system based on the
analysis of interpretable strings, which may be the first
attempt used as the signatures for malware detection.

• 2. Based on such large scale data set of high dimensiona-
lity and sparsity, we adapt SVM ensemble with bagging
technique to improve the system effectiveness and effi-
ciency.

• 3. Our SBMDS not only can provide the binary predic-
tion, e.g., whether a program is malicious or not, but also
can predict the exact type of the malware.

• 4. We evaluate our system on a large collection of execu-
tables including 8,320 benign samples and 31,518 mali-
cious ones.

• 5. We provide a comprehensive experimental study on
various anti-virus software as well as various data
mining techniques for malware detection using the large
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Table 5 The important relevant string samples and explanations of the
Worms

Interpretable strings Brief explanation

(1) sendmail The worms may intend to

send emails.

(2) system\controlset The worms may intend to

001\services\ load the services.

(3) \runouce.exe The worms of “ChineseHack”

intend to delete other worms.

(4) f rom : %s@yahoo The worms are sending emails.

.com

(5) hellobtamail. The worms are sending emails.

net.cn

(6) mail f rom : imiss The worms are sending emails.

you@btamail.net.cn

(7) netsend ∗ mygod! The worms are sending emails.

some one killed

%s monitor

(8) chinesehacker − 2 The representative of

“ChineseHack” worms.

(9) < html >< script The worms of “Nimda” try

language = “ javascript” to infect the scripts.

> window.open(“readme

.eml”)

collection of file samples collected by Kingsoft anti-virus
lab. The results of validation studies illustrate that: (1) The
accuracy and efficiency of our SBMDS outperform seve-
ral popular anti-virus software; (2) Based on the signa-
tures of interpretable strings, our SBMDS outperforms
data mining based detection systems which employ single
SVM, Naive Bayes with bagging, decision trees with
bagging; (3) Compared with the IMDS which utilizes
the OOA based classification on API calls, our SBMDS
achieves better performance.

• 6. Our system has been already incorporated into the scan-
ning tool of a commercial Anti-Virus software.
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